Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation

نویسندگان

  • Emilie Seydoux
  • Barbara Rothen-Rutishauser
  • Izabela M Nita
  • Sandor Balog
  • Amiq Gazdhar
  • Philip A Stumbles
  • Alke Petri-Fink
  • Fabian Blank
  • Christophe von Garnier
چکیده

INTRODUCTION Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. METHODS Bone marrow-derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4(+) T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. RESULTS The frequency of PS particle-positive CD11c(+)/CD11b(+) BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4(+) T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. CONCLUSION These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4(+) T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COP9 Limits Dendritic Branching via Cullin3-Dependent Degradation of the Actin-Crosslinking BTB-Domain Protein Kelch

Components of the COP9 signalosome (CSN), a key member of the conserved 26S proteasome degradation pathway, have been detected to be altered in patients of several debilitating syndromes. These findings suggest that CSN acts in neural circuits, but the exact function of CSN in brain remains unidentified. Previously, using Drosophila peripheral nervous system (PNS) as a model system, we determin...

متن کامل

Endosomally stored MHC class II does not contribute to antigen presentation by dendritic cells at inflammatory conditions.

Major histocompatibility complex (MHC) class II (MHCII) is constitutively expressed by immature dendritic cells (DC), but has a short half-life as a consequence of its transport to and degradation in lysosomes. For its transfer to lysosomes, MHCII is actively sorted to the intraluminal vesicles (ILV) of multivesicular bodies (MVB), a process driven by its ubiquitination. ILV have, besides their...

متن کامل

Encounter with antigen-specific primed CD4 T cells promotes MHC class II degradation in dendritic cells.

Major histocompatibility complex class II molecules (MHC-II) on antigen presenting cells (APCs) engage the TCR on antigen-specific CD4 T cells, thereby providing the specificity required for T cell priming and the induction of an effective immune response. In this study, we have asked whether antigen-loaded dendritic cells (DCs) that have been in contact with antigen-specific CD4 T cells retain...

متن کامل

Maturation State and Function of Monocyte Derived Dendritic Cells in Liver Transplant Recipients

Background: Dendritic cells (DCs) are potent antigen presenting cells for triggering of the immune reaction post transplantation. These cells are centrally involved in the initiation of T cell-dependent immune responses. Objective: To compare the level of DC maturation and function in liver transplant recipients with healthy controls. Methods: In this study, twelve peripheral blood samples we...

متن کامل

Autonomous phagosomal degradation and antigen presentation in dendritic cells.

Phagocytosis plays a critical role in both innate and adaptive immunity. Phagosomal fusion with late endosomes and lysosomes enhances proteolysis, causing degradation of the phagocytic content. Increased degradation participates in both innate protection against pathogens and the production of antigenic peptides for presentation to T lymphocytes during adaptive immune responses. Specific ligand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014